
논리 기반 정형 명세 및 모델 검증

배경민

2022년 2월 10일

POSTECH 소프트웨어 검증 연구실



그룹3 연구목표: 소프트웨어재난 재발방지

소프트웨어

• 동일한 원인에 의해 발생하는 소프트웨어 재난의 재발을 방지

• 연구내용1: 알려진 오류 원인들에 대한 재난오류 데이터베이스 구축

1



그룹3 연구목표: 소프트웨어재난 재발방지

알려진 오류 원인들 소프트웨어
재발방지?

• 동일한 원인에 의해 발생하는 소프트웨어 재난의 재발을 방지

• 연구내용1: 알려진 오류 원인들에 대한 재난오류 데이터베이스 구축

1



그룹3 연구목표: 소프트웨어재난 재발방지

알려진 오류 원인들 소프트웨어
재발방지?

• 동일한 원인에 의해 발생하는 소프트웨어 재난의 재발을 방지

• 연구내용1: 알려진 오류 원인들에 대한 재난오류 데이터베이스 구축

• 의문1: 코드기반? 오류 분석이 완료된 동일한 특정 소프트웨어 구현 재검증?

1



그룹3 연구목표: 소프트웨어재난 재발방지

알려진 오류 원인들 모델(혹은 설계) 소프트웨어
재발방지?

구현

• 동일한 원인에 의해 발생하는 소프트웨어 재난의 재발을 방지

• 연구내용1: 알려진 오류 원인들에 대한 재난오류 데이터베이스 구축

• 연구내용2: 모델(혹은 설계) 단계에서 소프트웨어 재난의 원인을 분석

1



그룹3 연구목표: 소프트웨어재난 재발방지

알려진 오류 원인들 모델(혹은 설계) 소프트웨어
재발방지?

구현

• 동일한 원인에 의해 발생하는 소프트웨어 재난의 재발을 방지

• 연구내용1: 알려진 오류 원인들에 대한 재난오류 데이터베이스 구축

• 연구내용2: 모델(혹은 설계) 단계에서 소프트웨어 재난의 원인을 분석

• 의문2: 모델이나 요구사항이 존재하지 않는 경우? 검증의 복잡성?

1



그룹3 연구목표: 소프트웨어재난 재발방지

알려진 오류 원인들 모델(혹은 설계) 소프트웨어
검증/분석

구현/합성

• 동일한 원인에 의해 발생하는 소프트웨어 재난의 재발을 방지

• 연구내용1: 알려진 오류 원인들에 대한 재난오류 데이터베이스 구축

• 연구내용2: 모델(혹은 설계) 단계에서 소프트웨어 재난의 원인을 분석

• 연구내용3: 모델 합성, 요구사항 추론, 오류패턴 기반 모델검증 등 신기술 개발

1



세부연구목표: 효과적인 모델링 및 검증

알려진 오류 원인들 모델(혹은 설계) 소프트웨어
검증/분석

구현/합성

• 정형명세: 위 목적에 부합하는 효과적인 모델링/명세 기법
• 고려사항: 검증 대상 소프트웨어, 분석 대상 오류, 모델 합성 용이성, …

• 모델검증: 주어진 모델의 요구사항을 효과적으로 검증하는 기법
• 고려사항:모델검증의 상태폭발(state-space explosion) 문제

2



세부연구목표: 효과적인 모델링 및 검증

알려진 오류 원인들 모델(혹은 설계) 소프트웨어
검증/분석

구현/합성

• 정형명세: 위 목적에 부합하는 효과적인 모델링/명세 기법
• 고려사항: 검증 대상 소프트웨어, 분석 대상 오류, 모델 합성 용이성, …

• 모델검증: 주어진 모델의 요구사항을 효과적으로 검증하는 기법
• 고려사항:모델검증의 상태폭발(state-space explosion) 문제

2



세부연구목표: 효과적인 모델링 및 검증

알려진 오류 원인들 모델(혹은 설계) 소프트웨어
검증/분석

구현/합성

• 정형명세: 위 목적에 부합하는 효과적인 모델링/명세 기법
• 고려사항: 검증 대상 소프트웨어, 분석 대상 오류, 모델 합성 용이성, …

• 모델검증: 주어진 모델의 요구사항을 효과적으로 검증하는 기법
• 고려사항:모델검증의 상태폭발(state-space explosion) 문제

2



모델검증이란?



모델 검증 (Model Checking)

• 시스템의 오류를 자동으로 찾는 기술

• 시스템의 모든 가능한 상태를 확인하여 “오류 없음” 증명 가능

• 소프트웨어/하드웨어 디자인, 프로토콜 디자인, 소스 코드, …

3



모델 검증 단계

1. 시스템 명세 (system specification)
• 모델링 언어 (Promela, Simulink, Verilog, …)
• 프로그래밍 언어 (C, Java, Haskell, …)

2. 검증 성질 명세 (property specification)
• functional correctness, safety, liveness, fault tolerance, …

3. 모델 검증 도구
• SPIN, CBMC, CPAchecker, NuSMV, PAT, TLA+, …

4



모델 검증 예제: 시스템 명세

• Dekker의 알고리즘
• 오직 하나의 스레드만 critical section에 접근 가능
• 일반적인 테스팅을 통해서는 검증이 어려움

1 c1 = 1;
2 while (c2 == 1) {
3 if (turn == 2) {
4 c1 = 0;
5 while (turn == 2) { /∗ wait ∗/ }
6 c1 = 1;
7 }
8 }
9 ... /∗ critical section ∗/

10 turn = 2;
11 c1 = 0;
12 ...

1 c2 = 1;
2 while (c1 == 1) {
3 if (turn == 1) {
4 c2 = 0;
5 while (turn == 1) { /∗ wait ∗/ }
6 c2 = 1;
7 }
8 }
9 ... /∗ critical section ∗/

10 turn = 1;
11 c2 = 0;
12 ...

5



모델 검증 예제: 검증 성질 명세

• Mutual exclusion
여러 스레드가 동시에 critical section에 접근할 수 없다.

• No starvation
각 스레드는 언젠가는 critical section에 접근할 수 있다.

• 시제 논리 언어 (temporal logic)로 엄밀히 표현 가능

6



모델 검증 예제: 모델 검증 알고리즘

• 가능한 모든 실행 시나리오를 검사하여 얻어지는 그래프

• 시스템 모델이 주어진 성질을 만족하는지 검사
• 예: ”mutual exclusion”이 위배되는 상태에 도달 가능한가?

7



모델 검증 기법의 장점

• 자동화
• 시스템 및 성질 명세 후 자동 실행

• 복잡한 성질 검사 가능
• 동시성 오류, 실시간 요구조건 등

• 오류 재현 용이
• 오류 발견 시 반례 생성

• 무결성 증명 가능
• 시스템/성질 명세 수준에서 “오류 없음” 증명

⇒ 다양한 산업체에서 활발하게 활용
• 안전필수 SW, 하드웨어 설계, 분산 시스템, 운영체제 설계, …

8



모델 검증 기법의 장점

• 자동화
• 시스템 및 성질 명세 후 자동 실행

• 복잡한 성질 검사 가능
• 동시성 오류, 실시간 요구조건 등

• 오류 재현 용이
• 오류 발견 시 반례 생성

• 무결성 증명 가능
• 시스템/성질 명세 수준에서 “오류 없음” 증명

⇒ 다양한 산업체에서 활발하게 활용
• 안전필수 SW, 하드웨어 설계, 분산 시스템, 운영체제 설계, …

8



모델 검증 기법 적용의 장애물

• 상태 폭발 문제 (state space explosion)
• 가능한 상태의 숫자가 기하급수적으로 증가

• 모델 검증 도구 언어의 표현력 문제
• 해당 도구의 언어(e.g, CBMC: C)에서 대상 시스템의 중요한 성질이 표현 불가능한 경우

9



모델 검증 기법 적용의 장애물

• 상태 폭발 문제 (state space explosion)
• 가능한 상태의 숫자가 기하급수적으로 증가

• 모델 검증 도구 언어의 표현력 문제
• 해당 도구의 언어(e.g, CBMC: C)에서 대상 시스템의 중요한 성질이 표현 불가능한 경우

9



Representational Gap: 소프트웨어재난 재발방지 연구의 경우

알려진 오류 원인들 모델(혹은 설계) 소프트웨어
검증/분석

구현/합성

• 어떠한 모델링 언어로 모델을 작성/합성하여야 할 것인가?

• C? Java? Boolean circuit? Petri nets? π-calculus? …

• 대상 성질/오류 및 시스템의 특성에 따라서 상이한 모델링 언어(들) 필요

• 정형 명세에서의 low representational gap을 달성하려면?

10



Representational Gap: 소프트웨어재난 재발방지 연구의 경우

알려진 오류 원인들 모델(혹은 설계) 소프트웨어
검증/분석

구현/합성

• 어떠한 모델링 언어로 모델을 작성/합성하여야 할 것인가?

• C? Java? Boolean circuit? Petri nets? π-calculus? …

• 대상 성질/오류 및 시스템의 특성에 따라서 상이한 모델링 언어(들) 필요

• 정형 명세에서의 low representational gap을 달성하려면?

10



Representational Gap: 소프트웨어재난 재발방지 연구의 경우

알려진 오류 원인들 모델(혹은 설계) 소프트웨어
검증/분석

구현/합성

• 어떠한 모델링 언어로 모델을 작성/합성하여야 할 것인가?

• C? Java? Boolean circuit? Petri nets? π-calculus? …

• 대상 성질/오류 및 시스템의 특성에 따라서 상이한 모델링 언어(들) 필요

• 정형 명세에서의 low representational gap을 달성하려면?

10



논리 기반 모델 검증



접근방법: 논리 기반 모델 검증

Model Logic System Verification

시스템 명세 수학적 모델
M =⇒ RM 모델

=⇒ 검증
성질 명세 논리식 알고리즘

spec =⇒ φspec

• 원하는 모델링 언어 및 모델링 결과를 사용 가능

• 논리 시스템의 다양한 알고리즘 및 최적화 기법 적용 가능

• 플러그인의 형태로 위 과정을 디자인 도구와 결합 가능

11



예: 다양한 기반 논리 시스템 및 모델검증 도구들

• Boolean logic
• CBMC, NuSMV, …

• Satisfiability modulo theories (SMT)
• nuXmv, MCMT, …

• Rewriting logic
• Maude, KEVM, RV-Predict, CafeOBJ, …

• Temporal logic of actions
• TLA+

12



연구 방향

1. 대상 시스템에 최적화된 모델링/정형명세 기법 연구
• low representational gap 달성

2. 해당 모델링 언어의 의미구조 정형명세 연구
• rewriting logic, SMT 등으로 operational semantics 정의

3. 의미구조 수준에서 효과적인 알고리즘/최적화 기법 연구
• encoding, abstraction, search heuristics/strategies, …,

13



연구 방향

1. 대상 시스템에 최적화된 모델링/정형명세 기법 연구
• low representational gap 달성

2. 해당 모델링 언어의 의미구조 정형명세 연구
• rewriting logic, SMT 등으로 operational semantics 정의

3. 의미구조 수준에서 효과적인 알고리즘/최적화 기법 연구
• encoding, abstraction, search heuristics/strategies, …,

13



연구 방향

1. 대상 시스템에 최적화된 모델링/정형명세 기법 연구
• low representational gap 달성

2. 해당 모델링 언어의 의미구조 정형명세 연구
• rewriting logic, SMT 등으로 operational semantics 정의

3. 의미구조 수준에서 효과적인 알고리즘/최적화 기법 연구
• encoding, abstraction, search heuristics/strategies, …,

13



진행 연구: Signal Temporal Logic 모델 검증 (1)

• 하이브리드 시스템 (Hybrid system): 소프트웨어 모델 + 물리모델

• 하이브리드 시스템의 상태: 연속적인 시그널로 표현

• Signal Temporal Logic (STL): 연속적인 시그널의 성질을 표현

14



진행 연구: Signal Temporal Logic 모델 검증 (1)

• 하이브리드 시스템 (Hybrid system): 소프트웨어 모델 + 물리모델

• 하이브리드 시스템의 상태: 연속적인 시그널로 표현

• Signal Temporal Logic (STL): 연속적인 시그널의 성질을 표현

14



진행 연구: Signal Temporal Logic 모델 검증 (1)

• 하이브리드 시스템 (Hybrid system): 소프트웨어 모델 + 물리모델

• 하이브리드 시스템의 상태: 연속적인 시그널로 표현

• Signal Temporal Logic (STL): 연속적인 시그널의 성질을 표현

14



진행 연구: Signal Temporal Logic 모델 검증 (2)

• 과거: 주로 오류탐색(falsification) 또는 테스트 목적으로 활용됨
• STL 모델검증 기술은 거의 개발되지 않았음

• STL 모델검증 알고리즘 개발
• 주어진 한계까지 오류를 완전히 탐색하는(refutation-complete) 이론 [POPL’19]
• 알고리즘의 성능 향상을 위해 불필요한 계산을 줄이는 방법 [ASE’21]
• 기반논리시스템: SMT + Ordinary differential equations

• STLmc: 실용적인 STL 모델검증 도구 개발 [in submission]
• 시스템 행위의 작은 차이에 견고한 모델 검증 (robust model checking)

N, τ 
H

ϵ-Strengthening Reduction
ϵ

Encoding of Boolean STL 
Model Checking

SMT Solving 
Interface

Two-Step 
Solving

SMT
Solvers Z3 Yices2 dReal

Counterexample 
(Visualization)

No counterexample 
up to bounds!

15



진행 연구: Signal Temporal Logic 모델 검증 (2)

• 과거: 주로 오류탐색(falsification) 또는 테스트 목적으로 활용됨
• STL 모델검증 기술은 거의 개발되지 않았음

• STL 모델검증 알고리즘 개발
• 주어진 한계까지 오류를 완전히 탐색하는(refutation-complete) 이론 [POPL’19]
• 알고리즘의 성능 향상을 위해 불필요한 계산을 줄이는 방법 [ASE’21]
• 기반논리시스템: SMT + Ordinary differential equations

• STLmc: 실용적인 STL 모델검증 도구 개발 [in submission]
• 시스템 행위의 작은 차이에 견고한 모델 검증 (robust model checking)

N, τ 
H

ϵ-Strengthening Reduction
ϵ

Encoding of Boolean STL 
Model Checking

SMT Solving 
Interface

Two-Step 
Solving

SMT
Solvers Z3 Yices2 dReal

Counterexample 
(Visualization)

No counterexample 
up to bounds!

15



진행 연구: Signal Temporal Logic 모델 검증 (2)

• 과거: 주로 오류탐색(falsification) 또는 테스트 목적으로 활용됨
• STL 모델검증 기술은 거의 개발되지 않았음

• STL 모델검증 알고리즘 개발
• 주어진 한계까지 오류를 완전히 탐색하는(refutation-complete) 이론 [POPL’19]
• 알고리즘의 성능 향상을 위해 불필요한 계산을 줄이는 방법 [ASE’21]
• 기반논리시스템: SMT + Ordinary differential equations

• STLmc: 실용적인 STL 모델검증 도구 개발 [in submission]
• 시스템 행위의 작은 차이에 견고한 모델 검증 (robust model checking)

N, τ 
H

ϵ-Strengthening Reduction
ϵ

Encoding of Boolean STL 
Model Checking

SMT Solving 
Interface

Two-Step 
Solving

SMT
Solvers Z3 Yices2 dReal

Counterexample 
(Visualization)

No counterexample 
up to bounds!

15



진행 연구: 분산 시스템 AADL 모델 검증 (1)

• AADL (Architecture Analysis and Design Language)
• (항공분야) 임베디드 시스템의 표준 모델링 언어
• Airbus, Boeing, Rockwell-Collins, Ford, Lockheed Martin, Raytheon, Toyota, …

• Virtually synchronous 분산 시스템
• Synchronous design: 각각의 컴포넌트가 주기적으로 동시에 실행
• Distributed implementation: 분산 네트워크 환경에 구현

• AADL로 설계된 Virtually synchronous 시스템의 모델검증
• 실시간 제약조건 고려: network delays, execution times, clock skews. …
• 물리 환경과의 상호작용 고려

16



진행 연구: 분산 시스템 AADL 모델 검증 (1)

• AADL (Architecture Analysis and Design Language)
• (항공분야) 임베디드 시스템의 표준 모델링 언어
• Airbus, Boeing, Rockwell-Collins, Ford, Lockheed Martin, Raytheon, Toyota, …

• Virtually synchronous 분산 시스템
• Synchronous design: 각각의 컴포넌트가 주기적으로 동시에 실행
• Distributed implementation: 분산 네트워크 환경에 구현

Controller1

Controller3
Controller4

Controller2

Network 
(Physical)
Entities

(Physical)
Entities

(Physical)
Entities

• AADL로 설계된 Virtually synchronous 시스템의 모델검증
• 실시간 제약조건 고려: network delays, execution times, clock skews. …
• 물리 환경과의 상호작용 고려

16



진행 연구: 분산 시스템 AADL 모델 검증 (1)

• AADL (Architecture Analysis and Design Language)
• (항공분야) 임베디드 시스템의 표준 모델링 언어
• Airbus, Boeing, Rockwell-Collins, Ford, Lockheed Martin, Raytheon, Toyota, …

• Virtually synchronous 분산 시스템
• Synchronous design: 각각의 컴포넌트가 주기적으로 동시에 실행
• Distributed implementation: 분산 네트워크 환경에 구현

• AADL로 설계된 Virtually synchronous 시스템의 모델검증
• 실시간 제약조건 고려: network delays, execution times, clock skews. …
• 물리 환경과의 상호작용 고려

16



진행 연구: 분산 시스템 AADL 모델 검증 (2)

• 아키텍처 설계 수준에 적용가능한 효과적 검증 방법론 연구
• Synchronous design 검증 수행 =⇒ 분산 시스템 모델의 올바름 보장
• PALS, TTA, LTTA 등 다양한 synchronizer 기반 기법 존재

• PALS와 TTA를 일반화하여 개선한 설계 및 검증 방법론 [EMSOFT’21]

• Virtually Synchronous AADL 모델의 논리기반 모델 검증 연구
• 기반 논리 시스템: rewriting logic + SMT
• AADL 언어의 synchronous subset 및 해당 의미구조 정의
• HybridSynchAADL 도구 개발 [CAV’21]

17



진행 연구: 분산 시스템 AADL 모델 검증 (2)

• 아키텍처 설계 수준에 적용가능한 효과적 검증 방법론 연구
• Synchronous design 검증 수행 =⇒ 분산 시스템 모델의 올바름 보장
• PALS, TTA, LTTA 등 다양한 synchronizer 기반 기법 존재
• PALS와 TTA를 일반화하여 개선한 설계 및 검증 방법론 [EMSOFT’21]

• Virtually Synchronous AADL 모델의 논리기반 모델 검증 연구
• 기반 논리 시스템: rewriting logic + SMT
• AADL 언어의 synchronous subset 및 해당 의미구조 정의
• HybridSynchAADL 도구 개발 [CAV’21]

17



진행 연구: 분산 시스템 AADL 모델 검증 (2)

• 아키텍처 설계 수준에 적용가능한 효과적 검증 방법론 연구
• Synchronous design 검증 수행 =⇒ 분산 시스템 모델의 올바름 보장
• PALS, TTA, LTTA 등 다양한 synchronizer 기반 기법 존재
• PALS와 TTA를 일반화하여 개선한 설계 및 검증 방법론 [EMSOFT’21]

• Virtually Synchronous AADL 모델의 논리기반 모델 검증 연구
• 기반 논리 시스템: rewriting logic + SMT
• AADL 언어의 synchronous subset 및 해당 의미구조 정의

• HybridSynchAADL 도구 개발 [CAV’21]

17



진행 연구: 분산 시스템 AADL 모델 검증 (2)

• 아키텍처 설계 수준에 적용가능한 효과적 검증 방법론 연구
• Synchronous design 검증 수행 =⇒ 분산 시스템 모델의 올바름 보장
• PALS, TTA, LTTA 등 다양한 synchronizer 기반 기법 존재
• PALS와 TTA를 일반화하여 개선한 설계 및 검증 방법론 [EMSOFT’21]

• Virtually Synchronous AADL 모델의 논리기반 모델 검증 연구
• 기반 논리 시스템: rewriting logic + SMT
• AADL 언어의 synchronous subset 및 해당 의미구조 정의
• HybridSynchAADL 도구 개발 [CAV’21]

17



1차년도 연구 내용 및 도전 과제



1차년도 연구

• 목적: 모델생성 및 검증의 공통플랫폼 구축

• 관심 도메인의 소프트웨어에 대한 정형명세 수행
• 차량 전장용 운영체제 표준인 OSEK/VDX 사용
• Low representational gap을 지향하는 정형명세: 모듈 수준 vs. 코드 수준 ?

• 관련된 모델검증의 표현력 및 상태폭발문제 해결 기법 탐색
• 정형명세 수준에서 추상화 / 알고리즘 수준의 요약 기법들
• 상태공간 축소 기법들

18



1차년도 연구

• 목적: 모델생성 및 검증의 공통플랫폼 구축

• 관심 도메인의 소프트웨어에 대한 정형명세 수행

• 차량 전장용 운영체제 표준인 OSEK/VDX 사용
• Low representational gap을 지향하는 정형명세: 모듈 수준 vs. 코드 수준 ?

• 관련된 모델검증의 표현력 및 상태폭발문제 해결 기법 탐색
• 정형명세 수준에서 추상화 / 알고리즘 수준의 요약 기법들
• 상태공간 축소 기법들

18



1차년도 연구

• 목적: 모델생성 및 검증의 공통플랫폼 구축

• 관심 도메인의 소프트웨어에 대한 정형명세 수행
• 차량 전장용 운영체제 표준인 OSEK/VDX 사용

• Low representational gap을 지향하는 정형명세: 모듈 수준 vs. 코드 수준 ?

• 관련된 모델검증의 표현력 및 상태폭발문제 해결 기법 탐색
• 정형명세 수준에서 추상화 / 알고리즘 수준의 요약 기법들
• 상태공간 축소 기법들

18



1차년도 연구

• 목적: 모델생성 및 검증의 공통플랫폼 구축

• 관심 도메인의 소프트웨어에 대한 정형명세 수행
• 차량 전장용 운영체제 표준인 OSEK/VDX 사용
• Low representational gap을 지향하는 정형명세

: 모듈 수준 vs. 코드 수준 ?

• 관련된 모델검증의 표현력 및 상태폭발문제 해결 기법 탐색
• 정형명세 수준에서 추상화 / 알고리즘 수준의 요약 기법들
• 상태공간 축소 기법들

18



1차년도 연구

• 목적: 모델생성 및 검증의 공통플랫폼 구축

• 관심 도메인의 소프트웨어에 대한 정형명세 수행
• 차량 전장용 운영체제 표준인 OSEK/VDX 사용
• Low representational gap을 지향하는 정형명세: 모듈 수준 vs. 코드 수준 ?

• 관련된 모델검증의 표현력 및 상태폭발문제 해결 기법 탐색
• 정형명세 수준에서 추상화 / 알고리즘 수준의 요약 기법들
• 상태공간 축소 기법들

18



1차년도 연구

• 목적: 모델생성 및 검증의 공통플랫폼 구축

• 관심 도메인의 소프트웨어에 대한 정형명세 수행
• 차량 전장용 운영체제 표준인 OSEK/VDX 사용
• Low representational gap을 지향하는 정형명세: 모듈 수준 vs. 코드 수준 ?

• 관련된 모델검증의 표현력 및 상태폭발문제 해결 기법 탐색

• 정형명세 수준에서 추상화 / 알고리즘 수준의 요약 기법들
• 상태공간 축소 기법들

18



1차년도 연구

• 목적: 모델생성 및 검증의 공통플랫폼 구축

• 관심 도메인의 소프트웨어에 대한 정형명세 수행
• 차량 전장용 운영체제 표준인 OSEK/VDX 사용
• Low representational gap을 지향하는 정형명세: 모듈 수준 vs. 코드 수준 ?

• 관련된 모델검증의 표현력 및 상태폭발문제 해결 기법 탐색
• 정형명세 수준에서 추상화 / 알고리즘 수준의 요약 기법들

• 상태공간 축소 기법들

18



1차년도 연구

• 목적: 모델생성 및 검증의 공통플랫폼 구축

• 관심 도메인의 소프트웨어에 대한 정형명세 수행
• 차량 전장용 운영체제 표준인 OSEK/VDX 사용
• Low representational gap을 지향하는 정형명세: 모듈 수준 vs. 코드 수준 ?

• 관련된 모델검증의 표현력 및 상태폭발문제 해결 기법 탐색
• 정형명세 수준에서 추상화 / 알고리즘 수준의 요약 기법들
• 상태공간 축소 기법들

18



진행 연구: 차량 전장용 운영체제 API 정형명세 (1)

• Low representational gap을 지향하는 정형명세 및 모델검증
• cf. 기존의 SPIN, CBMC 등 특정한 모델검증 도구를 활용하는 다양한 연구들

• 모듈수준: OSEK/VDX OS 규격의 핵심 부분에 대한 객체지향 명세

• 코드수준: C-like 명령형 언어의 K-style 의미구조 정의

• 기반 논리 시스템: Rewriting logic

19



진행 연구: 차량 전장용 운영체제 API 정형명세 (1)

• Low representational gap을 지향하는 정형명세 및 모델검증
• cf. 기존의 SPIN, CBMC 등 특정한 모델검증 도구를 활용하는 다양한 연구들

• 모듈수준: OSEK/VDX OS 규격의 핵심 부분에 대한 객체지향 명세

• 코드수준: C-like 명령형 언어의 K-style 의미구조 정의

• 기반 논리 시스템: Rewriting logic

19



진행 연구: 차량 전장용 운영체제 API 정형명세 (1)

• Low representational gap을 지향하는 정형명세 및 모델검증
• cf. 기존의 SPIN, CBMC 등 특정한 모델검증 도구를 활용하는 다양한 연구들

• 모듈수준: OSEK/VDX OS 규격의 핵심 부분에 대한 객체지향 명세

• 코드수준: C-like 명령형 언어의 K-style 의미구조 정의

• 기반 논리 시스템: Rewriting logic

19



진행 연구: 차량 전장용 운영체제 API 정형명세 (2)

• 실제(에 가까운 소규모) 응용프로그램 검증 수행
• Winlift: 차량전장용 창문제어 소프트웨어

• 상태공간축소 기법
• “수동”으로 정형명세를 수정하여 모델 수준 단순화
• Partial order reduction 및 time abstraction 적용

• 14개의 성질에 대하여 모델검증 수행 (new: 상태공간축소기법 적용)

20



진행 연구: 차량 전장용 운영체제 API 정형명세 (2)

• 실제(에 가까운 소규모) 응용프로그램 검증 수행
• Winlift: 차량전장용 창문제어 소프트웨어

• 상태공간축소 기법
• “수동”으로 정형명세를 수정하여 모델 수준 단순화
• Partial order reduction 및 time abstraction 적용

• 14개의 성질에 대하여 모델검증 수행 (new: 상태공간축소기법 적용)

20



진행 연구: 차량 전장용 운영체제 API 정형명세 (2)

• 실제(에 가까운 소규모) 응용프로그램 검증 수행
• Winlift: 차량전장용 창문제어 소프트웨어

• 상태공간축소 기법
• “수동”으로 정형명세를 수정하여 모델 수준 단순화
• Partial order reduction 및 time abstraction 적용

• 14개의 성질에 대하여 모델검증 수행 (new: 상태공간축소기법 적용)

20



도전과제: 2차년도

• Configurable 명세 수준 추상화

• 정형명세의 재작성없이 추상화 수준을 자유롭게 선택할 수 없을까?

• 아키텍처 수준, 컴포넌트 수준, 코드 수준, …

• cf. 데이터 요약(data abstraction), 점진적 모델링 및 검증(Alloy), …

• 기존 알려진 오류들을 활용하여 명세 수준 추상화 자동화
• 매우 많은 수의 명세 수준 추상화 가능성

• 오류와 관련성이 적은 부분(컴포넌트, 함수, 코드 등)을 우선적으로 자동으로 추상화

• cf. 알고리즘 수준의 요약 자동화 (CEGAR 등)

21



도전과제: 2차년도

• Configurable 명세 수준 추상화

• 정형명세의 재작성없이 추상화 수준을 자유롭게 선택할 수 없을까?

• 아키텍처 수준, 컴포넌트 수준, 코드 수준, …

• cf. 데이터 요약(data abstraction), 점진적 모델링 및 검증(Alloy), …

• 기존 알려진 오류들을 활용하여 명세 수준 추상화 자동화
• 매우 많은 수의 명세 수준 추상화 가능성

• 오류와 관련성이 적은 부분(컴포넌트, 함수, 코드 등)을 우선적으로 자동으로 추상화

• cf. 알고리즘 수준의 요약 자동화 (CEGAR 등)

21



도전과제: 2차년도

• Configurable 명세 수준 추상화

• 정형명세의 재작성없이 추상화 수준을 자유롭게 선택할 수 없을까?

• 아키텍처 수준, 컴포넌트 수준, 코드 수준, …

• cf. 데이터 요약(data abstraction)

, 점진적 모델링 및 검증(Alloy), …

• 기존 알려진 오류들을 활용하여 명세 수준 추상화 자동화
• 매우 많은 수의 명세 수준 추상화 가능성

• 오류와 관련성이 적은 부분(컴포넌트, 함수, 코드 등)을 우선적으로 자동으로 추상화

• cf. 알고리즘 수준의 요약 자동화 (CEGAR 등)

21



도전과제: 2차년도

• Configurable 명세 수준 추상화

• 정형명세의 재작성없이 추상화 수준을 자유롭게 선택할 수 없을까?

• 아키텍처 수준, 컴포넌트 수준, 코드 수준, …

• cf. 데이터 요약(data abstraction), 점진적 모델링 및 검증(Alloy), …

• 기존 알려진 오류들을 활용하여 명세 수준 추상화 자동화
• 매우 많은 수의 명세 수준 추상화 가능성

• 오류와 관련성이 적은 부분(컴포넌트, 함수, 코드 등)을 우선적으로 자동으로 추상화

• cf. 알고리즘 수준의 요약 자동화 (CEGAR 등)

21



도전과제: 2차년도

• Configurable 명세 수준 추상화

• 정형명세의 재작성없이 추상화 수준을 자유롭게 선택할 수 없을까?

• 아키텍처 수준, 컴포넌트 수준, 코드 수준, …

• cf. 데이터 요약(data abstraction), 점진적 모델링 및 검증(Alloy), …

• 기존 알려진 오류들을 활용하여 명세 수준 추상화 자동화
• 매우 많은 수의 명세 수준 추상화 가능성

• 오류와 관련성이 적은 부분(컴포넌트, 함수, 코드 등)을 우선적으로 자동으로 추상화

• cf. 알고리즘 수준의 요약 자동화 (CEGAR 등)

21



도전과제: 2차년도

• Configurable 명세 수준 추상화

• 정형명세의 재작성없이 추상화 수준을 자유롭게 선택할 수 없을까?

• 아키텍처 수준, 컴포넌트 수준, 코드 수준, …

• cf. 데이터 요약(data abstraction), 점진적 모델링 및 검증(Alloy), …

• 기존 알려진 오류들을 활용하여 명세 수준 추상화 자동화
• 매우 많은 수의 명세 수준 추상화 가능성

• 오류와 관련성이 적은 부분(컴포넌트, 함수, 코드 등)을 우선적으로 자동으로 추상화

• cf. 알고리즘 수준의 요약 자동화 (CEGAR 등)

21



도전과제: 2차년도

• Configurable 명세 수준 추상화

• 정형명세의 재작성없이 추상화 수준을 자유롭게 선택할 수 없을까?

• 아키텍처 수준, 컴포넌트 수준, 코드 수준, …

• cf. 데이터 요약(data abstraction), 점진적 모델링 및 검증(Alloy), …

• 기존 알려진 오류들을 활용하여 명세 수준 추상화 자동화
• 매우 많은 수의 명세 수준 추상화 가능성

• 오류와 관련성이 적은 부분(컴포넌트, 함수, 코드 등)을 우선적으로 자동으로 추상화

• cf. 알고리즘 수준의 요약 자동화 (CEGAR 등)

21



Thank you!

21


	모델검증이란?
	논리 기반 모델 검증
	1차년도 연구 내용 및 도전 과제

